

CALEIGH CHONG

email: cachong@umich.edu website: cachong.github.io

EDUCATION:

University of Michigan, Ann Arbor, MI
B.S.E. Electrical Engineering

Sept 2012 – May 2016

WORK EXPERIENCE:

ASM Pacific Technology Singapore – Intern

June 2015 – Aug 2015

- Collaborated with the motion team that consists of 25 people to add functions to semiconductor packaging equipment
- Developed VHDL modules to control and read back the speed of fans using pulse width modulation to help develop a controllable cooling instrument
- Designed a module to interface between an ADC and other FPGA modules to allow the analog data to be used throughout the rest of the system
- Utilized C++ and MFC to create a program with a GUI to automatically test the entire functionality of a mass produced board

University Housing – Residential Advisor

Sept 2013 – May 2016

- Facilitated community building within the residence halls by organizing events and providing access to different resources
- Provided support for a residence hall of 1300 first year students by managing administrative work and ensuring safety of the community
- Collaborated with a staff of 40 people to organize events for the residence hall and maintain the environment of the building

PROJECT EXPERIENCE:

EECS 452 – Digital Signal Processing Design Lab

Jan 2016 – Apr 2016

- Designed a standalone device that recognizes ASL gestures for numbers zero to five when a user is wearing a colored glove
- Configured a Raspberry Pi and Raspberry Pi Camera module to use C++ and OpenCV to run the algorithms
- Processed the image using 3 different steps; First isolating the image by thresholding Hue and Saturation in the HSV color space, smoothing the binary image using morphological operators and taking the largest connected component; Second extracting the hand's features using Harris corner detector, finding the centroid and intersections at different radii; Third classifying the gesture by comparing the number of intersections to a training set of data

EECS 373 – Embedded Systems Design and Implementation

Sept 2015 – Dec 2015

- Designed a 2-person game where each person wirelessly controls a tank over a programmable LED playing grid and tries to deplete the opponents health by shooting them
- Position and orientation of tanks tracked with AprilTags using overhead camera and OpenCV and shots appear as lit up LEDs on a 29x30 LED matrix
- Configured a SmartFusion with ARM Cortex-M3 processor using Verilog to recognize GPIO button interrupts and write the data onto an APB bus to implement shooting and turret motion
- Using C, interpreted the raw ADC values from the joystick and button data from an APB bus into UART data to be sent to the tanks
- Wirelessly sent control data the SmartFusion read from the controllers to the tanks using UART and XBee
- Received and interpreted a polled string of UART data on an Arduino to control tank and turret motion
- <https://www.youtube.com/watch?v=KKNLsc51gRI>

RELEVANT COURSEWORK:

EECS 461 – Embedded Control Systems

EECS 281 – Data Structures and Algorithms

SKILLS:

Programming: Proficient: C/C++

Working Knowledge: Python, Matlab

Basic: HTML, CSS, JavaScript

Technical: Verilog, VHDL, ARM Assembly, Cadence, Arduino, Raspberry Pi

Languages: Survival Level Mandarin Chinese